ON CLASSICAL, BAYESIAN AND FUZZY HYPOTHESES TESTING

A. Mohammad-Djafari¹

- (1) L2S, CNRS Supélec Univ. Paris-sud, Gif-sur-Yvette, France
- (2) Amirkabir University of Technology, Tehran Polytechnic, Iran

Let X_1, \dots, X_n be independent and identically distributed with density function $f(x|\theta)$, where θ is a one dimensional parameter. Consider testing simple versus simple hypotheses

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases},$$

where θ_0 and θ_1 are fixed numbers, based on a random sample. One can find the best solution for this problem in the different frameworks as follows:

Test	θ	Critical region (by)	Ref. [3]
Classic	fixed and unknown parameter	Neyman-Pearson	p.243
Bayes	random variable with known prior	Likelihood Ratio	p.227
Empirical Bayes	random variable with unknown prior	Likelihood Ratio	p.483

Now consider fuzzy hypotheses

$$\begin{cases} H_0: \theta \simeq \theta_0 & (\theta \text{ is approximatly } \theta_0) \\ H_1: \theta \simeq \theta_1 & (\theta \text{ is approximatly } \theta_1) \end{cases},$$

where $\theta \simeq \theta_i$, i = 0, 1 are expressed by two membership functions $m_0(\theta)$, $m_1(\theta)$ in fuzzy community and by two prior probability laws $\pi_0(\theta)$ and $\pi_1(\theta)$ in Bayesian community. A few authors had tried to find the best test for testing fuzzy hypotheses, [1,2,4]. In this paper we show that the best test for fuzzy hypotheses in the Bayesian framework is simply equivalent to Neyman-Pearson Lemma in the classical statistics.

Key Words: Calssic, Bayes and empirical Bayes test, fuzzy hypotheses, Neyman-Pearson lemma, likelihood ratio test.

References:

- [1] Arnold, B.F. (1996) An approach to fuzzy hypothesis testing. Metrika 44, 119-126.
- [2] Arnold, B.F. (1998) Testing fuzzy hypotheses with crisp data. FSS 94, 323-333.
- [3] Robert, C.P. (2001) The Bayesian Choice (2nd edition). Springer, New York.
- [4] Taheri, S.M. and J. Behboodian (1999) Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49, 3-17.